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Abstract

In this paper, the free vibration of thick, isotropic and laminated composite rectangular plates with point
supports is analyzed by the ®nite layer method. A new set of two-dimensional basic functions, which satis®es the
kinematic boundary conditions at the edges of the plate and the zero-displacement conditions at point supports, is

developed to describe the variation of three-dimensional displacements in the plane of a thin ®nite layer. One-
dimensional linear or quadratic shape functions are adopted to describe the variation of the displacements through
the thickness layer. The governing eigenvalue equation of the plate is derived via the conventional displacement

method. Numerical results for the three-dimensional vibration of rectangular plates with point supports are
presented herein for the ®rst time. The eigenfrequencies of simply-supported rectangular plates with a central point-
support are studied in detail by considering the variations of aspect ratio, side-to-thickness ratio, properties of

materials, number of laminates and stacking sequences. Comparison with known thin-plate and Mindlin-plate
solutions is carried out to verify the applicability and accuracy of the proposed method. # 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

The rectangular plate is one of the most commonly used structural elements in civil, aeronautical and
marine engineering. The vibration frequencies are important parameters for the dynamic analysis of
structures.

A close scrutiny among the references on dynamic analysis of structural elements reveals that to date,
most investigations are about thin plates (Leissa, 1969), while study on vibration of thick plates has
received little attention because of the di�culty in expressing the three-dimensional displacement ®eld.
The di�culty of three-dimensional analysis renders the rapid development of re®ned plate theories
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(Mindlin, 1951; Reddy, 1984; Hanna and Leissa, 1994). Applying these theories, one can reduce the
dimension of problems from three to two by taking certain averages of some parametric quantities, such
as membrane forces, bending moments and shear forces, over the smaller dimension (thickness). The
Mindlin plate theory (Mindlin, 1951) is formulated by introducing the concept of a shear correction
factor to account for the in¯uence of shear deformation on the dynamic properties of the plate.
Numerical studies using the Mindlin plates theory (Dave, 1978; Liew et al., 1993) can be found in the
literature. However, it should be noted that although the analytical accuracy can be improved by using
higher-order theories, the local variation of through-thickness displacements of the plate cannot be
exactly represented and thus results in errors which increase with the thickness of the plate. For very
thick plates, a three-dimensional elasticity theory is necessary to obtain accurate results. Because of the
complexity of the problem, closed-form exact solutions exist only for simply-supported thick rectangular
plates (Srinivas et al., 1970). In most cases, approximate analytical and/or numerical methods have to be
adopted. It is well-known that the ®nite element method is an applicable tool to such a problem.
However, it requires discretisation in every dimension of the problem and therefore, will require more
unknowns for approximation than some other methods. This certainly results in the increase in cost and
the requirement of a super-computer. Cheung and Chakrabarti (1972) used the ®nite layer method and
Fan and Sheng (1992) used the analytical method to investigate the free vibration of thick, layered
rectangular plates. Leissa and Zhang (1983) and Liew et al. (1993, 1994) used polynomials as trial
functions to study the three-dimensional free vibration of isotropic thick rectangular plates by the
Rayleigh±Ritz method.

In some practical applications, such as ¯oor slabs, bridge decks and solar panels, interior and edge
point-supports are often placed at some locations of the plate to limit the displacements and to achieve
a better distribution of stresses and/or to satisfy special architectural and functional requirements. The
e�ects of point supports on the dynamic characteristics of plates have been an interesting subject for
many researchers. For thin rectangular plates with point supports, some pioneering studies have been
carried out by Fan and Cheung (1984) using the ®nite strip method, Mizusawa and Kajita (1987) using
the spline element method, Kim and Dickinson (1987) using polynomials as trial functions in the
Rayleigh±Ritz method and Gorman and Singal (1991) using the analytical superposition method.
Recently, Liew et al. (1994) used a set of pb-2 shape functions to study the free vibration of Mindlin
plates with point supports. However, no information is currently available for free vibration of three-
dimensional thick plates with point supports. The ®nite layer method (Cheung and Tham, 1997) is used
in this paper to investigate the free vibration of thick, layered rectangular plates with point supports. A
new set of basic functions is constructed in two parts with the ®rst part being a set of static beam
functions under sinusoidal loads, while the second is for beams under point loads. These functions are
developed to describe variation of the three-dimensional displacements in the plane of a thin ®nite layer,
while a one-dimensional linear or quadratic shape function is adopted to describe the variation of the
displacements through the thickness of the layer. This set of basic functions satis®es the geometric
boundary conditions at the edges of the plate and the zero-displacement conditions at the point
supports. A simply-supported rectangular plate with a central point-support is taken as an example of
numerical application. The in¯uence of aspect ratio, side-to-thickness ratio and various structural
parameters on the eigenfrequencies of plates is examined in detail. Some numerical data are tabulated
and compared with other thin-plate and Mindlin-plate results and the accuracy has been con®rmed by
convergence studies.

2. Two sets of static beam functions

In order to study the free vibration of thick rectangular plates with point supports, two sets of one-
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dimensional static beam functions have to be developed. They will together form a set of two-
dimensional basic functions representing the variation of displacements in the plane of a thin ®nite
layer.

2.1. The static beam functions under a series of sinusoidal loads

Consider a beam subject to a series of static sinusoidal loads distributed along the length, the
complete solution (Zhou, 1996) may be written as

z�x� �
X1
i�1

Qifi�x� �1a�

fi�x� � B0i � B1ix� B2ix
2 � B3ix

3 � sin ipx �1b�
where z�x� is the de¯ection of the beam, Qi denotes the amplitude of the ith sinusoidal load component,
x �0 E x E 1� is the non-dimensional coordinate along the beam and Bji � j � 0, 1, 2, 3� are the unknown
constants which can be determined by the boundary conditions of the beam (for a beam without rigid
body motions) as shown in Table 1.

For a beam with rigid body motions, the coe�cients Bji � j � 0, 1, 2, 3� cannot be determined directly
by the boundary conditions. In this case, the rigid body modes should be added to the static beam
functions. For example, the static beam functions for a F-S beam should be selected as

f1�x� � 1ÿ x,

fi � 1�x� � B0i � B1ix� B2ix
2 � B3ix

3 � sin ipx, i e 1 �1c�

where Bji ( j = 0, 1, 2, 3) are those for the F-C beam. For an S-F beam, the static beam functions
should be selected as

f1�x� � x,

fi�1�x� � B0i � B1ix� B2ix
2 � B3ix

3 � sin ipx, i e 1 �1d�

Table 1

The coe�cients of static beam functions under sinusoidal loads

Boundary condition B0i B1i B2i B3i

S-S 0 0 0 0

C-C 0 ÿip ip��ÿ1�i � 2� ip��ÿ1�i � 1�
C-F 0 ÿip ÿ�ip�3�ÿ1�i=2 �ip�3�ÿ1�i=6
C-S 0 ÿip 3ip/2 ÿip/2
F-C �ÿ1�i�ip���ip�2=3� 1� ÿ�ÿ1�i�ip���ip�2=2� 1� 0 �ip�3�ÿ1�i=6
S-C 0 �ip��ÿ1�i=2 0 ÿip�ÿ1�i=2
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where Bji � j � 0, 1, 2, 3� are those for the C-F beam. Finally for an F-F beam, the static beam functions
should be selected as

f1�x� � 1,

f2�x� � x or f2�x� � 1ÿ x,

fi�2�x� � B0i � B1ix� B2ix
2 � B3ix

3 � sin ipx, i e 1 �1e�
where Bji � j � 0, 1, 2, 3� are those for a C-F beam (or an F-C beam).

2.2. The static beam functions under a series of point-loads

Consider a beam acted upon by P static point-loads, the complete solution (Zhou, 1994) may be
written as

z�x� �
XP
k�1

Pkfk�x�, �2a�

fk�x� � A0k � A1kx� A2kx
2 � A3kx

3 � ÿxÿ xkj
�3
U�xÿ xk � �2b�

Table 2

The coe�cients of static beam functions under point-loads

Boundary condition A0k A1k A2k A3k

S-S 0 �1ÿ xk�xk�2ÿ xk� 0 ÿ�1ÿ xk�
C-C 0 0 3xk�1ÿ xk�2 ÿ�1ÿ xk�2�1� 2xk�
C-F 0 0 3xk ÿ1
C-S 0 0 ÿ3�1ÿ xk�xk�xk ÿ 2�=2 �1ÿ xk��x2k ÿ 2xk ÿ 2�=2
F-C �1ÿ xk�2�2� xk� ÿ3�1ÿ xk�2 0 0

S-C 0 3�1ÿ xk�2xk=2 0 ÿ�1ÿ xk�2�2� xk�=2

Fig. 1. A thick rectangular plate with point supports.

D. Zhou et al. / International Journal of Solids and Structures 37 (2000) 1483±14991486



where U�xÿ xk� is the step function, Pk denotes the magnitude of the kth point-load and Aik �i �
0, 1, 2, 3� are the unknown constants which can be determined by the boundary conditions of the beam
(for a beam without rigid body motions) as shown in Table 2.

3. Finite layer formulation

A rectangular thick laminated composite plate with point supports is shown in Fig. 1. The plate is
divided into a number of ®nite layers through the thickness. Each individual rectangular layer has two
(L02) or three (H03) nodal surfaces. A suitable set of displacement functions is selected as

u�x, y, z� �
XI
i � 1

XJ
j � 1

@Wij�x, y�=@x
�
N�z��fagij �3a�

u�x, y, z� �
XI
i � 1

XJ
j � 1

@Wij�x, y�=@y
�
N�z���b	ij �3b�

w�x, y, z� �
XI
i � 1

XJ
j � 1

Wij�x, y�
�
N�z��fdgij �3c�

where Wij�x, y� are the basic functions formed by the two sets of static beam functions, �N�z�� denotes
the one-dimensional linear (L02) or quadratic (H03) shape functions, I and J are truncated order of the
displacement functions. The in-plane displacements along the x- and y-axes are de®ned by u�x, y, z� and
u�x, y, z�, respectively. The displacement unknowns are denoted by fagij, fbgij and fdgij.
Using the above three equations, the strain±displacement relationships are derived as

feg �

8>>>>>>>>>>><>>>>>>>>>>>:

ex

ey

ez

gyz

gxz

gxy

9>>>>>>>>>>>=>>>>>>>>>>>;
�
XI
i � 1

XJ
j � 1

26666666666666666666666664

@2Wij

@x2
�N� 0 0

0
@2Wij

@y2
�N� 0

0 0 Wij

�
dN

dz

�
0

@Wij

@y

�
dN

dz

�
@Wij

@y
�N�

@Wij

@x

�
dN

dz

�
0

@Wij

@x
�N�

@2Wij

@x @y
�N� @2Wij

@x @y
�N� 0

37777777777777777777777775

8>>>><>>>>:
fag�
b
	
fgg

9>>>>=>>>>;
i, j

: �4�

The stress±strain relationships are

fsg � fsx sy sz tyz txz txygT � �D�feg �5�

where �D� is the property matrix for materials as given in Appendix A. Applying the well-known
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displacement method, the global sti�ness and mass matrices can be easily formed by assembling the
layer sti�ness and mass matrices, as given in Appendix B, for each individual ®nite layer. Finally,
eigenfrequencies and corresponding mode shapes can be extracted using standard procedures of
eigenvalue analysis.

4. Basic functions

The basic functions Wij�x, y� which describe the variation of three-dimensional displacements of each
®nite layer in the x±y coordinate plate, must satisfy the prescribed geometrical boundary conditions of
the plate, including the zero-displacement conditions at point supports. It is obvious that the
conventional admissible functions such as the vibrating beam functions cannot be directly applied to this
problem because of the existence of point supports. On the other hand, using the continuous beam
vibrating functions as proposed by Cheung and Delcourt (1977) required rather lengthy computation
and is therefore, inconvenient. Here the basic functions selected comprise of two parts, namely, the ®rst
part being the product of the one-dimensional static beam functions �fi�x�, cj�Z�� under sinusoidal loads,
while the second part is the product of the one-dimensional static beam function �fk�x�, gk�Z�� under the
kth point load. The basic functions can be written as

Wij�x, Z� � fi�x�cj�Z� �
XP
k � 1

Rijkfk�x�gk�Z� �6�

where x � z=a, Z � y=b and P is the number of the point supports. fi�x� is the static beam function
under the ith sinusoidal load component, as given by eqns (1b±e), which satis®es the corresponding
boundary conditions of the plate in the x-direction but disregarding the point supports. fk�x� is the beam
function under the kth point-load, as given by eqn (2b), which satis®es the corresponding boundary
conditions of the plate in the x-direction and treating all point supports as point-loads. It should be
noted that for beams with rigid body motions as shown in Fig. 2, boundary conditions of the type C-F

Fig. 2. The relations between point-loaded beams and the point-supported plate.
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or F-C should be used. The same principle applies to functions cj�Z� and gk�Z� in the Z-direction. The
unknown coe�cients Rijk�k � 1, 2, . . . , P � in eqn (6) are determined by the zero-displacement conditions
of the plate at the P point-supports, as demonstrated below:

Fij

ÿ
xl, Zl

� � fi�xl �cj�Zl � �
XP
k � 1

Rijkfk�xl�gk�Zl � � 0, �7a�

where �xl, Zl� is the coordinate of the lth point-support of the plate. Consequently, the following linear
simultaneous equations can be obtained266666664

f1�x1�g1�Z1� f2�x1 �g2�Z1 � . . . fP�x1�gP�Z1 �
f1�x2�g1�Z2� f2�x2 �g2�Z2 � . . . fP�x2�gP�Z2 �

..

. ..
. ..

. ..
.

f1�xP �g1�ZP � f2�xP �g2�ZP � . . . fP�xP �gP�ZP �

377777775

26666664
Rij1

Rij2

..

.

RijP

37777775 �
266666664

ÿfi�x1�cj�Z1�
ÿfi�x2�cj�Z2�

..

.

ÿfi�xP �cj�ZP �

377777775
, �7b�

for every pair of i, j.
The solution of the above equation may be easily obtained as follows26666664

Rij1

Rij2

..

.

RijP

37777775 �
266666664

f1�x1�g1�Z1� f2�x1 �g2�Z1 � . . . fP�x1�gP�Z1 �
f1�x2�g1�Z2� f2�x2 �g2�Z2 � . . . fP�x2�gP�Z2 �

..

. ..
. ..

. ..
.

f1�xP �g1�ZP � f2�xP �g2�ZP � . . . fP�xP �gP�ZP �

377777775

ÿ1266666664

ÿfi�x1�cj�Z1 �
ÿfi�x2�cj�Z2 �

..

.

ÿfi�xP�cj�ZP �

377777775: �8�

On closer examination of eqns (3c) and (6), one can easily observe that the out-of-plane displacement
w�x, y, z� vanishes at the point supports across the thickness. This implies that a point support is
equivalent to imposing rigid-line constraint to the vertical displacement w�x, y, z� across the thickness.
Obviously, for a plate without point supports (Zhou, 1996), all Rijk�k � 1, 2, . . . , P � are equal to zero.
Furthermore, because the coe�cient matrix of Rijk�k � 1, 2, . . . , P � is independent of the summing
variables i and j, only one inverse calculation to the coe�cient matrix in eqn (10) is required when solving
the coe�cients Rijk�k � 1, 2, . . . , P � for all i and j. As a result, the computational cost is greatly reduced.

5. Numerical studies

The ®nite layer method developed in previous sections is applied to compute the non-dimensional
frequency parameters, l � o �b=2�2�rt= ���������������

D11D22

p �1=2, for thick, laminated rectangular plates and l �
ob2

�����������
rt=D
p

for isotropic thin plates, where o is the circular frequency D11 � E1t
3=�12�1ÿ v12v21�� and

D22 � E2t
3=�12�1ÿ v12v21��. It is obvious that D11 � D22 � D � Et3=�12�1ÿ v2�� for isotropic plates. For

laminated plates, the properties of material (Noor, 1973) are taken as follows: E1=E2 � 40; G12=E2 �
0:6; G23=E2 � 0:5; G13 � G23; v12 � v13 � 0:25. The ®bre orientations of di�erent laminae alternate
between 0 and 908 with respect to the x-axis. The in¯uences of the plate aspect ratios �l � a=b�, side-to-
thickness ratios �t=b�, stacking sequences for laminated plates are examined. These results are, to the
best of the author's knowledge, presented for the ®rst time in open literature. It is noteworthy that for
simply-supported plates with a central point-support, the vibration modes can be classi®ed into four
distinct categories, namely, double symmetric (SS) modes, symmetric±antisymmetric modes (SA),
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antisymmetric±symmetric modes (AS) and double antisymmetric modes (AA). Each of these categories
is separately determined and thus, results in a smaller set of eigenfrequency equations. However, since
the eigenfrequencies of the SA, AS and AA modes in this case are just the same as those of plates
without the point support (Cheung and Chakrabarti, 1972; Liew et al., 1993), only the SS modes are
computed. In the following examples, all ®nite layers are taken to be the same thickness and 24
Gaussian integration points are used for the integral computations in the x±y plane. For isotropic
plates, v � 0:3 is assumed.

5.1. Convergence and comparison

The ®nite layer approach gives an upper-bound solution to the exact value. A convergence study is
®rst carried out so as to ensure that the solutions to the problem are convergent and to establish the
required number of terms in the three-dimensional displacement functions for obtaining satisfactory
accuracy. In Table 3, convergence patterns of the ®rst eight eigenfrequencies of the symmetric±
symmetric mode for an isotropic homogeneous, simply-supported square plate with a central point-
support are presented. It can be seen that the eigenfrequencies converge monotonically from above as
the number of terms of basic functions and the number of L02 layers increase. A careful scrutiny of the
convergence table reveals that the terms of the basic functions in the x±y plane play a more dominant
role in the convergence and accuracy than the number of the layers in the z-direction both for thin and
thick plates. The convergence rate for the thin plate �t=b � 0:01� is slightly faster than that for the thick
plate �t=b � 0:02�. In general, the comparison of the present results with those (Kim and Dickinson,
1987) obtained by the thin plate theory for the thin plate �t=b � 0:01� are better than those (Liew et al.,
1994) obtained by the Mindlin plate theory for the thicker plate �t=b � 0:02�. However, the di�erence is
rather small and the maximum error is less than 2.1% for all cases. Moreover, from the table it is
shown that using higher-order interpolation functions in the thickness direction of the layer can further
improve the computational accuracy.

In Table 4, a comparative study of the ®rst ®ve eigenfrequencies of thin square plates �t=b � 0:01�
with a corner-support (where symmetry does not exist) and with four corner-supports (where symmetry
exists but not utilized in the computations) are given. The terms of displacement functions in the x- and
y-directions and the number of L02 layers in the z-direction are taken as 5� 5� 5. Comparison of the
present results with those obtained by the thin plate theory (Mizusawa and Kajita, 1987; Kim and
Dickinson, 1987) shows that good agreement is observed for all cases.

5.2. Numerical examples

From the convergence studies, it is found that the 7� 7 terms of the displacement functions in the x±
y plane and ®ve L02 ®nite layers in the z-direction are su�cient to obtain satisfactory results for both
thin plates and thick plates and they are used throughout the following computations.

The non-dimensional eigenfrequencies of symmetric±symmetric modes for the simply-supported
isotropic rectangular plate with a central point-support are given in Table 5. The in¯uences of aspect
ratio and side-to-thickness ratio on the eigenfrequencies are studied. It is observed that for a plate with
a prescribed aspect ratio, the non-dimensional eigenfrequencies, l, decrease as the side-to-thickness ratio,
t/b, increases, especially for the higher modes. Conversely, for a plate with a prescribed thickness ratio,
the non-dimensional eigenfrequencies decrease as the aspect ratio, a/b, increases.

The second set of results is for a skew-symmetric rectangular laminate with a central point-support. It
consists of two plies with 0/908 stacking sequences. In this case, symmetry of vibrating modes of the
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plate still exists. The thickness of the two laminates is not identical. The thickness of the 0 and the 908
ply is taken as 3/5 and 2/5 of the total thickness of the plate, respectively. The ®rst eight non-
dimensional eigenfrequencies for the symmetric±symmetric modes are given in Table 6.

The ®nal set of results is for a symmetric±symmetric rectangular laminate with a central point-
support. It consists of three plies with 0/90/08 stacking sequences. It is obvious that symmetry also exists
for such a plate. The thickness of each of the two outer 08 plies is taken as 2/5 of the total thickness,
while the thickness of the middle 908 ply is taken as 1/5 of the total thickness. The ®rseight non-
dimensional eigenfrequencies for the symmetric±symmetric modes are listed in Table 7 with di�erent
aspect ratio and side-to-thickness ratio.

It should be pointed out that the accuracy of the ®nite layer analysis can be improved by using
quadratic (H03) instead of the linear (L02) interpolations. In Table 8 a comparative study is given for

Table 3

Convergence study of non-dimensional eigenfrequencies, l � o �b=2�2 �����������
rt=D
p

for isotropic homogeneous square thick plates with

simply-supported edges and a central point-support

Thickness

ratio t/b

Terms in

x, y, z

Mode number

SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

0.01 4 � 4 � 4 13.77 24.80 37.83 53.41 64.32 75.85 83.99 106.2

4 � 4 � 5 13.74 24.74 37.74 53.29 64.15 75.66 83.78 106.0

5 � 5 � 4 13.65 24.80 37.60 53.80 64.32 75.50 83.99 104.9

5 � 5 � 5 13.62 24.74 37.52 52.96 64.15 75.32 83.78 104.6

6 � 6 � 4 13.56 24.80 37.45 52.87 64.32 75.29 83.99 104.1

6 � 6 � 5 13.53 24.74 37.36 52.75 64.15 75.11 83.78 103.9

6 � 6 � 6 13.52 24.71 37.32 52.68 64.06 75.01 83.66 103.7

7 � 7 � 5 13.38 24.74 37.25 52.60 64.15 74.96 83.78 103.3

Kim and

Dickinson (1987)

13.29 24.67 37.05

0.1 4 � 4 � 4 11.88 21.58 29.97 36.46 40.23 45.35 48.05 53.81

4 � 4 � 5 11.85 21.50 29.85 36.46 40.07 45.35 47.86 53.57

5 � 5 � 4 11.69 21.58 29.62 36.11 39.88 45.23 48.05 53.45

5 � 5 � 5 11.65 21.50 29.50 36.11 39.72 45.23 47.86 53.21

6 � 6 � 4 11.54 21.58 29.36 35.88 39.63 45.15 48.05 53.19

6 � 6 � 5 11.50 21.50 29.24 35.88 39.47 45.15 47.86 52.96

6 � 6 � 6 11.48 21.46 29.17 35.88 39.38 45.15 47.74 52.83

7 � 7 � 5 11.39 21.50 29.03 35.71 39.28 45.10 47.86 52.76

7 � 7 � 3a 11.31 21.37 28.82 35.71 38.99 45.10 47.50 52.35

Liew et al. (1994) 11.40 21.26 29.42

0.2 4 � 4 � 4 9.125 16.72 18.23 21.24 22.62 27.60 32.54 32.81

4 � 4 � 5 9.115 16.65 18.23 21.13 22.62 27.45 32.35 32.80

5 � 5 � 4 8.962 16.72 18.05 20.96 22.56 27.38 32.54 32.62

5 � 5 � 5 8.919 16.65 18.05 20.85 22.56 27.24 32.35 32.62

6 � 6 � 4 8.817 16.72 17.94 20.74 22.52 27.24 32.49 32.54

6 � 6 � 5 8.775 16.64 17.94 20.64 22.52 27.09 32.35 32.49

6 � 6 � 6 8.751 16.60 17.94 20.58 22.52 27.00 32.24 32.49

7 � 7 � 5 8.663 16.64 17.85 20.47 22.49 26.98 32.35 32.40

7 � 7 � 3a 8.590 16.51 17.85 20.29 22.49 26.72 32.01 32.40

Liew et al. (1994) 8.512 16.29 20.60

a The quadratic interpolation in the z-direction is used for each layer.
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Table 4

The ®rst ®ve non-dimensional eigenfrequencies, l � ob2
�����������
rt=D
p

, of isotropic square thin plates with point supports at corners and

di�erent boundary conditions at the edges

Bound. con. Methods l1 l2 l3 l4 l5

Present 15.59 24.51 40.32 55.52 64.98

Mizusawa (1987) 15.12 23.70 39.37 53.53 62.54

Kim (1987) 15.17 23.92 39.39 54.16 62.85

Present 12.17 21.73 35.64 48.42 60.28

Mizusawa (1987) 11.94 21.06 35.01 47.24 57.92

Kim (1987) 11.94 21.18 35.02 47.40 58.14

Present 9.724 17.54 30.83 44.41 52.71

Mizusawa (1987) 9.608 17.32 30.60 43.65 51.04

Kim (1987) 9.6079 17.316 30.596 43.652 51.051

Present 5.427 16.31 22.45 29.95 44.50

Mizusawa (1987) 5.312 15.86 21.71 29.29 43.39

Present 7.246 15.85 15.85 20.07 39.92

Mizusawa (1987) 7.111 15.77 15.77 19.60 38.43

Table 5

The ®rst eight non-dimensional eigenfrequencies of symmetric±symmetric mode, l � o �b=2�2 �����������
rt=D
p

, for isotropic thick plates with

simply-supported edges and a central point-support

Aspect

ratio a/b

Thickness

ratio t/b

Mode number

SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

1.0 0.10 11.38 21.50 29.03 35.71 39.28 45.10 47.86 52.76

0.15 9.913 18.95 23.81 24.19 30.03 32.23 38.97 42.17

0.20 8.663 16.64 17.85 20.47 22.49 26.98 32.35 32.40

0.25 7.648 14.29 14.69 17.65 17.95 23.05 25.92 26.02

0.30 6.825 11.90 13.08 14.91 15.46 20.05 21.57 21.60

1.5 0.10 7.520 15.26 22.37 26.24 29.79 32.76 38.31 40.54

0.15 6.857 13.43 19.50 19.86 22.69 25.53 27.13 30.92

0.20 6.208 11.83 14.89 17.00 19.13 19.64 22.86 23.18

0.25 5.625 10.50 11.91 14.94 15.28 17.15 18.52 19.64

0.30 5.117 9.404 9.927 12.12 13.26 15.15 15.41 17.15

2.0 0.10 5.453 11.61 17.80 21.83 25.66 26.72 29.39 34.97

0.15 5.132 10.36 15.82 17.81 19.09 22.14 23.48 24.97

0.20 4.781 9.210 13.36 14.00 16.68 17.60 18.71 19.14

0.25 4.437 8.229 10.68 12.44 14.08 14.68 14.94 16.71

0.30 4.115 7.409 8.903 11.13 11.73 12.43 13.04 14.76
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Table 6

The ®rst eight non-dimensional eigenfrequencies of symmetric-symmetric mode, l � o �b=2�2�rt= ���������������
D11D22

p �1=2, for skew-symmetric

rectangular laminates with simply-supported edges and a central point-support

Aspect

ratio a/b

Thickness

ratio t/b

Mode number

SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

1.0 0.10 7.286 14.60 18.00 22.95 28.27 30.44 32.67 35.86

0.15 5.777 11.35 13.55 17.20 20.52 22.11 23.99 24.03

0.20 4.789 9.215 10.83 13.72 16.00 16.43 17.39 18.95

0.25 4.090 7.746 9.019 11.39 11.70 13.55 14.08 14.33

0.30 3.568 6.679 7.723 9.075 9.771 10.80 11.52 12.15

1.5 0.10 5.193 10.01 15.67 16.80 19.75 23.66 26.37 29.48

0.15 4.345 7.973 11.88 12.93 14.86 17.82 19.59 20.09

0.20 3.695 6.604 9.502 10.48 11.87 13.99 14.25 15.54

0.25 3.200 5.627 7.916 8.799 9.869 10.46 11.85 12.85

0.30 2.816 4.897 6.786 7.580 8.158 8.503 9.979 10.14

2.0 0.10 4.059 7.647 11.95 15.68 16.72 18.26 20.88 23.83

0.15 3.541 6.218 9.493 11.75 12.79 13.98 15.72 17.48

0.20 3.085 5.211 7.823 9.374 10.30 11.29 12.47 12.66

0.25 2.709 4.475 6.6398 7.802 8.607 9.442 9.580 10.47

0.30 2.405 3.916 5.758 6.687 7.377 7.628 8.132 8.955

Table 7

The ®rst eight non-dimensional eigenfrequencies of symmetric±symmetric mode, l � o �b=2�2�rt= ���������������
D11D22

p �1=2, for symmetric rec-

tangular laminates with simply-supported edges and a central point-support

Aspect

ratio a/b

Thickness

ratio t/b

Mode number

SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

1.0 0.10 7.328 13.19 20.88 22.12 25.73 30.94 35.19 35.59

0.15 5.920 10.37 15.10 16.94 19.13 23.00 23.13 25.29

0.20 4.896 8.580 11.76 13.66 15.39 16.76 18.27 19.40

0.25 4.157 7.328 9.637 11.40 12.88 12.92 15.08 15.25

0.30 3.609 6.398 8.161 9.768 10.27 11.14 11.33 12.72

1.5 0.10 5.657 9.216 13.95 19.76 20.73 22.45 25.22 27.14

0.15 4.681 7.425 11.11 14.59 15.42 16.62 17.92 18.69

0.20 3.937 6.164 9.244 11.29 12.31 13.26 13.38 14.86

0.25 3.379 5.265 7.914 9.219 10.18 10.43 11.38 12.36

0.30 2.954 4.599 6.914 7.792 8.528 8.678 9.847 10.57

2.0 0.10 5.105 7.102 10.50 14.45 18.93 20.50 21.27 22.88

0.15 4.195 5.910 8.493 11.55 14.42 14.85 15.42 15.44

0.20 3.513 4.988 7.086 9.622 11.13 11.50 11.75 12.48

0.25 3.010 4.293 6.080 8.238 9.055 9.121 9.666 10.48

0.30 2.630 3.761 5.328 7.190 7.524 7.639 8.216 9.739
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an isotropic thick plate with SSSS support conditions for linear interpolation (L02) and quadratic
interpolation (H03). It can be seen that the results of the 2� 2� 3 H03 analysis are already nearly exact
and are better than those of the 2� 2� 15 L02 analysis. It should be noted that be condensing the
degrees-of-freedom associated with the H03 middle nodal surface there is very little di�erence in the
amount of computational e�orts between the L02 and H03 analysis.

6. Concluding remarks

A new set of two-dimensional basic functions has been developed by superimposing a set of static
beam functions under sinusoidal loads to another set of beam functions under point loads. Unlike
existing basic functions for vibration analysis of plates, this set of basic functions satis®es not only the
geometric boundary conditions at the edges of the plate but also the zero out-of-plane de¯ection at the
point supports. This new set of functions is combined with the ®nite layer method for the free vibration
analysis of isotropic and laminated composite rectangular plates with point supports. Numerical results
are compared with the thin-plate results for plates with di�erent arrangement of point supports and
good agreement is observed in all cases. To demonstrate the in¯uence of aspect ratio, side-to-thickness
ratio, material properties and stacking sequences on the vibrational behaviour of the plates with point
supports, a simply-supported plate with a central point support is taken as an example to study idetail.
Results for isotropic thick plates and laminated composite thick plates with two and three plies are
summarized. To the best of the authors' knowledge, the information provided herein for three-
dimensional vibration of thick plates with point supports is presented for the ®rst time.

Appendix A

The property matrix �D� for the composite materials with the ®ber orientation angle y with respect to
the x-axis is

Table 8

The convergence and comparison study of ®nite layer method for three-dimensional eigenvalues l � �oa2�=p2�rt=D�2 of an

isotropic thick square plate with SSSS boundary conditions, t/a = 0.5, v = 0.3

Method Terms in x, y, z SS-1 SS-2 SS-3

Quadratic interpolation 2 � 2 � 2a 1.2630 1.8451 2.9351

2 � 2 � 3 1.2598 1.8451 2.9330

2 � 2 � 4 1.2592 1.8451 2.9326

2 � 2 � 5 1.2591 1.8451 2.9325

Linear interpolation 2 � 2 � 5 1.2709 1.8451 2.9439

2 � 2 � 8 1.2638 1.8451 2.9371

2 � 2 � 10 1.2621 1.8451 2.9355

2 � 2 � 15 1.2604 1.8451 2.9338

Rayleigh±Ritzb 4 � 4 � 9 1.2590 1.8451 2.9335

a The sequence of the terms is number of terms in x- and y-direction; number of ®nite layers in z-direction.
b From Liew, K.M., Hung, K.C., Lim, M.K., 1993. A continuum three-dimensional vibration analysis of thick rectangular plates.

Int. J. Solids Struct. 30 (24), 3357±3379.
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�D� �

2666666666664

D11 D12 D13 0 0 D16

D12 D22 D23 0 0 D26

D13 D23 D33 0 0 D36

0 0 0 D44 D45 0

0 0 0 D45 D55 0

D16 D26 D36 0 0 D66

3777777777775
where

D11 � Q11m
4 � 2�Q12 � 2Q66 �m2n2 �Q22n

4,

D12 � �Q11 �Q22 ÿ 4Q66 �m2n2 �Q12

ÿ
m4 � n4

�
,

D13 � Q13m
2 �Q23n

2,

D16 � ÿmn3Q22 �m3nQ11 ÿmn�m2 ÿ n2��Q12 � 2Q66 �,

D22 � Q11n
4 � 2�Q12 � 2Q66 �m2n2 �Q22m

4,

D23 � Q13n
2 �Q23m

2, D33 � Q33,

D26 � ÿm3nQ22 �mn3Q11 �mn�m2 ÿ n2��Q12 � 2Q66 �,

D36 � �Q13 ÿQ23�mn, D44 � Q44m
2 �Q55n

2,

D45 � �Q55 ÿQ44�mn, D55 � Q55m
2 �Q44n

2,

D66 � �Q11 �Q22 ÿ 2Q12 �m2n2 �Q66
�m2 ÿ n2�2

in which,

m � cos �y�, n � sin �y�

and

Q11 � E11�1ÿ v23v32�=D, Q22 � E22�1ÿ v31v13�=D,

Q33 � E33�1ÿ v12v21�=D, Q44 � G23, Q55 � G13,

Q66 � G12, Q12 � �v12 � v32v13 �E22=D,

Q13 � �v13 � v12v23 �E22=D, Q23 � �v23 � v21v13 �E33=D,

D � 1ÿ v12v21 ÿ v23v32 ÿ v31v13 ÿ 2v21v32v13:

In the above equations, E11 and E22 are the Young's moduli parallel and perpendicular to the ®bers,
respectively and E33 is the Young's modulus in the thickness direction of the plate, G23, G13 and G12 are
the shear moduli of elasticity, v12, v21, v13, v31, v32 and v23 are the Poisson's ratios.
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Appendix B

The layer sti�ness matrix �K � and mass matrix �M � are written in the form of, respectively,

�K� �

266666666666664

�K�1,1,1,1 . . . �K�1,1,1,J �K�1,1,2,1 . . . �K�1,1,I,J
..
. ..

. ..
. ..

. ..
. ..

.

�K�1,J,1,1 . . . �K�1,J,1,J �K�1,J,2,1 . . . �K�1,J,I,J
�K�2,1,1,1 . . . �K�2,1,1,J �K�2,1,2,1 . . . �K�2,1,I,J

..

. ..
. ..

. ..
. ..

. ..
.

�K�I,J,1,1 . . . �K�I,J,1,J �K�I,J,2,1 . . . �K�I,J,I,J

377777777777775

�M� �

266666666666664

�M�1,1,1,1 . . . �M�1,1,1,J �M�1,1,2,1 . . . �M�1,1,I,J
..
. ..

. ..
. ..

. ..
. ..

.

�M�1,J,1,1 . . . �M�1,J,1,J �M�1,J,2,1 . . . �M�1,J,I,J
�M�2,1,1,1 . . . �M�2,1,1,J �M�2,1,2,1 . . . �M�2,1,I,J

..

. ..
. ..

. ..
. ..

. ..
.

�M�I,J,1,1 . . . �M�I,J,1,J �M�I,J,2,1 . . . �M�I,J,I,J

377777777777775
where

�K�ijkl �

2664
�K11 � �K12 � �K13 �
�K21 � �K22 � �K23 �
�K31 � �K32 � �K33 �

3775
ijkl

, i, k � 1, 2, . . . , I, j, l � 1, 2, . . . , J,

�M�ijkl �

2664
�M11 � 0 0

0 �M22 � 0

0 0 �M33 �

3775
ijkl

, i, k � 1, 2, . . . , I, j,l � 1, 2, . . . , J,

in which,

�K11 �ijkl � D11

� �
@2Wij

@x2

@2Wkl

@x2
dx dy

�
�N�T�N� dz�D16

� �
@2Wij

@x2

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz

�D55

� �
@Wij

@x

@Wkl

@x
dx dy

��
dN

dz

�T�
dN

dz

�
dz�D16

� �
@2Wij

@x @y

@2Wkl

@x2
dx dy

�
�N�T�N� dz

�D66

� �
@2Wij

@x @y

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz,
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�K12 �ijkl � D12

� �
@2Wij

@x2

@2Wkl

@y2
dx dy

�
�N�T�N� dz�D16

� �
@2Wij

@x2

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz

�D45

� �
@Wij

@x

@Wkl

@y
dx dy

��
dN

dz

�T�
dN

dz

�
dz�D26

� �
@2Wij

@x @y

@2Wkl

@y2
dx dy

�
�N�T�N� dz

�D66

� �
@2Wij

@x @y

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz,

�K13 �ijkl � D13

� �
@2Wij

@x2
Wkl dx dy

�
�N�T

�
dN

dz

�
dz�D45

� �
@Wij

@x

@Wkl

@y
dx dy

��
dN

dz

�T

�N� dz

�D55

� �
@Wij

@x

@Wkl

@y
dx dy

��
dN

dz

�T

�N� dz�D36

� �
@2Wij

@x @y
Wkl dx dy

�
�N�T

�
dN

dz

�
dz,

�K21 �ijkl � D12

� �
@2Wij

@y2
@2Wkl

@x2
dx dy

�
�N�T�N� dz�D26

� �
@2Wij

@y2
@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz

�D45

� �
@Wij

@y

@Wkl

@x
dx dy

��
dN

dz

�T�
dN

dz

�
dz�D16

� �
@2Wij

@x @y

@2Wkl

@x2
dx dy

�
�N�T�N� dz

�D66

� �
@2Wij

@x @y

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz,

�K22 �ijkl � D22

� �
@2Wij

@y2
@2Wkl

@y2
dx dy

�
�N�T�N� dz�D26

� �
@2Wij

@y2
@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz

�D44

� �
@Wij

@y

@Wkl

@x
dx dy

��
dN

dz

�T�
dN

dz

�
dz�D26

� �
@2Wij

@x @y

@2Wkl

@y2
dx dy

�
�N�T�N� dz

�D66

� �
@2Wij

@x @y

@ 2Wkl

@x @y
dx dy

�
�N�T�N� dz,

�K23 �ijkl � D23

� �
@2Wij

@y2
Wkl dx dy

�
�N�T

�
dN

dz

�
dz�D44

� �
@Wij

@y

@Wkl

@y
dx dy

��
dN

dz

�T

�N� dz

�D45

� �
@Wij

@y

@Wkl

@y
dx dy

��
dN

dz

�T

�N� dz�D36

� �
@2Wij

@x @y
Wkl dx dy

�
�N�T

�
dN

dz

�
dz,

�K31 �ijkl � D13

� �
Wij

@2Wkl

@x2
dx dy

��
dN

dz

�T

�N� dz�D36

� �
Wij

@2Wkl

@x @y
dx dy

��
dN

dz

�T

�N� dz

�D45

� �
@Wij

@y

@Wkl

@x
dx dy

�
�N�T

�
dN

dz

�
dz�D55

� �
@Wij

@x

@Wkl

@x
dx dy

�
�N�T

�
dN

dz

�
dz,
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�K32 �ijkl � D23

� �
Wij

@2Wkl

@y2
dx dy

��
dN

dz

�T

�N� dz�D36

� �
Wij

@2Wij

@x @y
dx dy

��
dN

dz

�T

�N� dz

�D44

� �
@Wij

@y

@Wkl

@y
dx dy

�
�N�T

�
dN

dz

�
dz�D45

� �
@Wij

@x

@Wkl

@y
dx dy

�
�N�T

�
dN

dz

�
dz,

�K33 �ijkl � D33

� �
WijWkl dx dy

��
dN

dz

�T�
dN

dz

�
dz�D44

� �
@Wij

@y

@Wkl

@y
dx dy

�
�N�T�N� dz

�D45

� �
@Wij

@y

@Wkl

@x
dx dy

�
�N�T�N� dz�D45

� �
@Wij

@x

@Wkl

@y
dx dy

�
�N�T�N� dz

�D55

� �
@Wij

@x

@Wkl

@x
dx dy

�
�N�T�N� dz,

�M11 �ijkl � r
� �

@Wij

@x

@Wkl

@x
dx dy

�
�N�T�N� dz,

�M22 �ijkl � r
� �

@Wij

@y

@Wkl

@y
dx dy

�
�N�T�N� dz,

�M33 �ijkl � r
� �

WijWkl dx dy

�
�N�T�N� dz:

In the above equations, the double integrations are carried out over the entire surface of the plate and
integration through the thickness of each layer is done separately, r is the density of the material.
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