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Abstract

In this paper, the free vibration of thick, isotropic and laminated composite rectangular plates with point
supports is analyzed by the finite layer method. A new set of two-dimensional basic functions, which satisfies the
kinematic boundary conditions at the edges of the plate and the zero-displacement conditions at point supports, is
developed to describe the variation of three-dimensional displacements in the plane of a thin finite layer. One-
dimensional linear or quadratic shape functions are adopted to describe the variation of the displacements through
the thickness layer. The governing eigenvalue equation of the plate is derived via the conventional displacement
method. Numerical results for the three-dimensional vibration of rectangular plates with point supports are
presented herein for the first time. The eigenfrequencies of simply-supported rectangular plates with a central point-
support are studied in detail by considering the variations of aspect ratio, side-to-thickness ratio, properties of
materials, number of laminates and stacking sequences. Comparison with known thin-plate and Mindlin-plate
solutions is carried out to verify the applicability and accuracy of the proposed method. © 1999 Elsevier Science
Ltd. All rights reserved.

1. Introduction

The rectangular plate is one of the most commonly used structural elements in civil, aecronautical and
marine engineering. The vibration frequencies are important parameters for the dynamic analysis of
structures.

A close scrutiny among the references on dynamic analysis of structural elements reveals that to date,
most investigations are about thin plates (Leissa, 1969), while study on vibration of thick plates has
received little attention because of the difficulty in expressing the three-dimensional displacement field.
The difficulty of three-dimensional analysis renders the rapid development of refined plate theories
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(Mindlin, 1951; Reddy, 1984; Hanna and Leissa, 1994). Applying these theories, one can reduce the
dimension of problems from three to two by taking certain averages of some parametric quantities, such
as membrane forces, bending moments and shear forces, over the smaller dimension (thickness). The
Mindlin plate theory (Mindlin, 1951) is formulated by introducing the concept of a shear correction
factor to account for the influence of shear deformation on the dynamic properties of the plate.
Numerical studies using the Mindlin plates theory (Dave, 1978; Liew et al., 1993) can be found in the
literature. However, it should be noted that although the analytical accuracy can be improved by using
higher-order theories, the local variation of through-thickness displacements of the plate cannot be
exactly represented and thus results in errors which increase with the thickness of the plate. For very
thick plates, a three-dimensional elasticity theory is necessary to obtain accurate results. Because of the
complexity of the problem, closed-form exact solutions exist only for simply-supported thick rectangular
plates (Srinivas et al., 1970). In most cases, approximate analytical and/or numerical methods have to be
adopted. It is well-known that the finite element method is an applicable tool to such a problem.
However, it requires discretisation in every dimension of the problem and therefore, will require more
unknowns for approximation than some other methods. This certainly results in the increase in cost and
the requirement of a super-computer. Cheung and Chakrabarti (1972) used the finite layer method and
Fan and Sheng (1992) used the analytical method to investigate the free vibration of thick, layered
rectangular plates. Leissa and Zhang (1983) and Liew et al. (1993, 1994) used polynomials as trial
functions to study the three-dimensional free vibration of isotropic thick rectangular plates by the
Rayleigh—Ritz method.

In some practical applications, such as floor slabs, bridge decks and solar panels, interior and edge
point-supports are often placed at some locations of the plate to limit the displacements and to achieve
a better distribution of stresses and/or to satisfy special architectural and functional requirements. The
effects of point supports on the dynamic characteristics of plates have been an interesting subject for
many researchers. For thin rectangular plates with point supports, some pioneering studies have been
carried out by Fan and Cheung (1984) using the finite strip method, Mizusawa and Kajita (1987) using
the spline element method, Kim and Dickinson (1987) using polynomials as trial functions in the
Rayleigh—Ritz method and Gorman and Singal (1991) using the analytical superposition method.
Recently, Liew et al. (1994) used a set of pb-2 shape functions to study the free vibration of Mindlin
plates with point supports. However, no information is currently available for free vibration of three-
dimensional thick plates with point supports. The finite layer method (Cheung and Tham, 1997) is used
in this paper to investigate the free vibration of thick, layered rectangular plates with point supports. A
new set of basic functions is constructed in two parts with the first part being a set of static beam
functions under sinusoidal loads, while the second is for beams under point loads. These functions are
developed to describe variation of the three-dimensional displacements in the plane of a thin finite layer,
while a one-dimensional linear or quadratic shape function is adopted to describe the variation of the
displacements through the thickness of the layer. This set of basic functions satisfies the geometric
boundary conditions at the edges of the plate and the zero-displacement conditions at the point
supports. A simply-supported rectangular plate with a central point-support is taken as an example of
numerical application. The influence of aspect ratio, side-to-thickness ratio and various structural
parameters on the eigenfrequencies of plates is examined in detail. Some numerical data are tabulated
and compared with other thin-plate and Mindlin-plate results and the accuracy has been confirmed by
convergence studies.

2. Two sets of static beam functions

In order to study the free vibration of thick rectangular plates with point supports, two sets of one-
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dimensional static beam functions have to be developed. They will together form a set of two-
dimensional basic functions representing the variation of displacements in the plane of a thin finite
layer.

2.1. The static beam functions under a series of sinusoidal loads

Consider a beam subject to a series of static sinusoidal loads distributed along the length, the
complete solution (Zhou, 1996) may be written as

) =) Q&) (1a)
i=1

$/(&) = Boi + B1i& + By&® + By& + sin iné (1b)

where z(¢) is the deflection of the beam, Q; denotes the amplitude of the ith sinusoidal load component,
£ (0 < & < 1) is the non-dimensional coordinate along the beam and Bj; (j =0, 1, 2, 3) are the unknown
constants which can be determined by the boundary conditions of the beam (for a beam without rigid
body motions) as shown in Table 1.

For a beam with rigid body motions, the coefficients Bj; (j =0, 1, 2, 3) cannot be determined directly
by the boundary conditions. In this case, the rigid body modes should be added to the static beam
functions. For example, the static beam functions for a F-S beam should be selected as

01 =1-¢,
¢ 4 1(&) = Boi + Bii€ + By 4 By,& +sininé, i> 1 (Ic)

where Bj; (j = 0, 1, 2, 3) are those for the F-C beam. For an S-F beam, the static beam functions
should be selected as

$1(&) =¢,

¢ir1(€) = Boi + Bui¢ + By&® + By, & +sininé, i> 1 (1d)

Table 1
The coefficients of static beam functions under sinusoidal loads

Boundary condition By; By; B>, Bs;

S-S 0 0 0 0

Cc-C 0 —in in((=1) +2) in((=1) + 1)
C-F 0 —in —(in)*(=1)'/2 (in)*(=1)'/6
C-S 0 —in 3in/2 —in/2

F-C (=Di(in)[(im)*/3 + 1] (=1 (im)[(in)* /2 + 1] 0 (in)’(—1)'/6
S-C 0 (in)(=1)'/2 0 —in(—=1)'/2
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Table 2
The coefficients of static beam functions under point-loads

Boundary condition Aok Atk A Aszk

S-S 0 (1 - EDEQR— &) 0 —(1-¢&)

c-C 0 0 351 = &) —(1 = &)1 +2&)
C-F 0 0 3¢, -1

C-S 0 0 =3(1 = E)E(E — 2)/2 (1 = ENE =28 —2)/2
F-C (1-&PC+&) =301 - &) 0 0

S-C 0 31— &)&/2 0 —(1 =&y Q+8&)/2

where Bj; (j =0, 1, 2, 3) are those for the C-F beam. Finally for an F-F beam, the static beam functions
should be selected as

$1(&) =1,
P (&)=< or (&) =1-¢,
Gio(E) = Boi + Bui€ + By&® + By & +sininé, i> 1 (le)

where Bj; (j =0, 1, 2, 3) are those for a C-F beam (or an F-C beam).
2.2. The static beam functions under a series of point-loads

Consider a beam acted upon by P static point-loads, the complete solution (Zhou, 1994) may be
written as

.
2(8) = Y Pifi(©), (2a)
k=1
Jil&) = Ao + Al + AnE + Ay E 4 (8= &) UE — &) (2b)
A w

y(m, v (&), u
Point-supports

Fig. 1. A thick rectangular plate with point supports.
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where U(E — &) is the step function, Py denotes the magnitude of the kth point-load and A (i=
0, 1, 2, 3) are the unknown constants which can be determined by the boundary conditions of the beam
(for a beam without rigid body motions) as shown in Table 2.

3. Finite layer formulation

A rectangular thick laminated composite plate with point supports is shown in Fig. 1. The plate is
divided into a number of finite layers through the thickness. Each individual rectangular layer has two
(L02) or three (H03) nodal surfaces. A suitable set of displacement functions is selected as

I
ux, y,z) = Z Z IWi(x, y)/9x[N(z) {a}; (32)
=1 j=1
I
(X, ¥, Z) = Z Z IWi(x, y)/8y[N(Z)]{/)’}y. (3b)
i=1 j=1
I
w(x, y, 2) = Z Z Wii(x, y)[N(z)]{5}ij (3¢)
i=1 j=1

where Wj(x, y) are the basic functions formed by the two sets of static beam functions, [N(z)] denotes
the one-dimensional linear (L02) or quadratic (H03) shape functions, 7 and J are truncated order of the
displacement functions. The in-plane displacements along the x- and y-axes are defined by v(x, y, z) and
v(x, y, z), respectively. The displacement unknowns are denoted by {a};, {8}; and {};.

Using the above three equations, the strain—displacement relationships are derived as

_ 2w, -
N 0 0
P [N]
Wy
Ex ayz' [N] 0
& dN
) ., 0 0 W,-j[dz} ol
=1 = i )
/yz i; »/; 0 WU I:d_N:| 0 Wii [N]
Pz oy Ldz] 9y m
oW, [ dN oWy
Viw ij| 4V Wit ar
! ox [ dz i| 0 0x V]
2W 2W
[N — N
ax 8y[ ] ax By[ ] 0
The stress—strain relationships are
{O-} = {ax Oy 0z Ty Txz Tyy }T = [D]{‘%} (5)

where [D] is the property matrix for materials as given in Appendix A. Applying the well-known
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Fig. 2. The relations between point-loaded beams and the point-supported plate.

displacement method, the global stiffness and mass matrices can be easily formed by assembling the
layer stiffness and mass matrices, as given in Appendix B, for each individual finite layer. Finally,
eigenfrequencies and corresponding mode shapes can be extracted using standard procedures of
eigenvalue analysis.

4. Basic functions

The basic functions Wj(x, y) which describe the variation of three-dimensional displacements of each
finite layer in the x—y coordinate plate, must satisfy the prescribed geometrical boundary conditions of
the plate, including the zero-displacement conditions at point supports. It is obvious that the
conventional admissible functions such as the vibrating beam functions cannot be directly applied to this
problem because of the existence of point supports. On the other hand, using the continuous beam
vibrating functions as proposed by Cheung and Delcourt (1977) required rather lengthy computation
and is therefore, inconvenient. Here the basic functions selected comprise of two parts, namely, the first
part being the product of the one-dimensional static beam functions (¢,(¢), ¥;(n)) under sinusoidal loads,
while the second part is the product of the one-dimensional static beam function (f;(&), gx(n7)) under the
kth point load. The basic functions can be written as

P
W&, n) = o) + Z Rijifi(©)gk(n) (6)

k=1

where & =z/a,n=y/b and P is the number of the point supports. ¢;(¢) is the static beam function
under the ith sinusoidal load component, as given by eqns (1b—e), which satisfies the corresponding
boundary conditions of the plate in the £-direction but disregarding the point supports. f(&) is the beam
function under the kth point-load, as given by eqn (2b), which satisfies the corresponding boundary
conditions of the plate in the ¢-direction and treating all point supports as point-loads. It should be
noted that for beams with rigid body motions as shown in Fig. 2, boundary conditions of the type C-F
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or F-C should be used. The same principle applies to functions (i) and gi(n7) in the n-direction. The
unknown coefficients Rjx(k =1,2,..., P) in eqn (6) are determined by the zero-displacement conditions
of the plate at the P point-supports, as demonstrated below:

P
(&1 ) = diEDW(ny) + ZRg//Jk(fl)gk(ﬂz) =0, (7a)
k=1

where (¢, ;) is the coordinate of the /th point-support of the plate. Consequently, the following linear
simultaneous equations can be obtained

[AGogion)  AEDm) - SrEDgeen) [[Ra T [ =€) ]
N(&)gi(m)  [(E)ga(m) - [r(C)gr(n2) || Rin =& ()
= ) , (7b)
_fl(fp)gl(ﬂp) f(Ep)e2mp) - fP(fP)gP(’?p)_ Rjp _—d’f(fp)lﬁj(’?P)_
for every pair of i, j.
The solution of the above equation may be easily obtained as follows
Ry | [ Aiam) AEDgm) - fegem) | [ =& ]
Rip S1(E)g1(m)  f2(&)m) - Sr(E2)gr(n) =&V ()
= ) ) ) . . : (®)
Ryp _fl(fp)gl(”lp) fr(Cp)ga(mp) - fP(fP)gP(”IP)_ _—‘15[(513)#/(’7}’)_

On closer examination of eqns (3c) and (6), one can easily observe that the out-of-plane displacement
w(x, y, z) vanishes at the point supports across the thickness. This implies that a point support is
equivalent to imposing rigid-line constraint to the vertical displacement w(x, y, z) across the thickness.
Obviously, for a plate without point supports (Zhou, 1996), all Rju(k=1,2,..., P) are equal to zero.

Furthermore, because the coefficient matrix of Ry (k=1,2,..., P) is independent of the summing
variables i and j, only one inverse calculation to the coefficient matrix in eqn (10) is required when solving
the coefficients Ryx(k =1,2,..., P) for all i and j. As a result, the computational cost is greatly reduced.

5. Numerical studies

The finite layer method developed in previous sections is applied to compute the non-dimensional
frequency parameters, A = w(b/2)*(pt/~/D11D2)"?, for thick, laminated rectangular plates and A=
wb?\/pt]/D for isotropic thin plates, where @ is the circular frequency D; = E;£3/[12(1 — vi3v5;)] and
Dy = E>3/[12(1 — v12v21)]. It is obvious that Dy, = Dy, = D = Ef/[12(1 — v?)] for isotropic plates. For
laminated plates, the properties of material (Noor, 1973) are taken as follows: E|/E, = 40; G;2/E, =
0.6; Go3/E; = 0.5;Gi3 = Gas;vip = vz = 0.25. The fibre orientations of different laminae alternate
between 0 and 90° with respect to the x-axis. The influences of the plate aspect ratios (A = a/b), side-to-
thickness ratios (z/b), stacking sequences for laminated plates are examined. These results are, to the
best of the author’s knowledge, presented for the first time in open literature. It is noteworthy that for
simply-supported plates with a central point-support, the vibration modes can be classified into four
distinct categories, namely, double symmetric (SS) modes, symmetric—antisymmetric modes (SA),
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antisymmetric—symmetric modes (AS) and double antisymmetric modes (AA). Each of these categories
is separately determined and thus, results in a smaller set of eigenfrequency equations. However, since
the eigenfrequencies of the SA, AS and AA modes in this case are just the same as those of plates
without the point support (Cheung and Chakrabarti, 1972; Liew et al., 1993), only the SS modes are
computed. In the following examples, all finite layers are taken to be the same thickness and 24
Gaussian integration points are used for the integral computations in the x—y plane. For isotropic
plates, v = 0.3 is assumed.

5.1. Convergence and comparison

The finite layer approach gives an upper-bound solution to the exact value. A convergence study is
first carried out so as to ensure that the solutions to the problem are convergent and to establish the
required number of terms in the three-dimensional displacement functions for obtaining satisfactory
accuracy. In Table 3, convergence patterns of the first eight eigenfrequencies of the symmetric—
symmetric mode for an isotropic homogeneous, simply-supported square plate with a central point-
support are presented. It can be seen that the eigenfrequencies converge monotonically from above as
the number of terms of basic functions and the number of L02 layers increase. A careful scrutiny of the
convergence table reveals that the terms of the basic functions in the x—y plane play a more dominant
role in the convergence and accuracy than the number of the layers in the z-direction both for thin and
thick plates. The convergence rate for the thin plate (¢/b = 0.01) is slightly faster than that for the thick
plate (¢/6 = 0.02). In general, the comparison of the present results with those (Kim and Dickinson,
1987) obtained by the thin plate theory for the thin plate (¢/b = 0.01) are better than those (Liew et al.,
1994) obtained by the Mindlin plate theory for the thicker plate (¢/b = 0.02). However, the difference is
rather small and the maximum error is less than 2.1% for all cases. Moreover, from the table it is
shown that using higher-order interpolation functions in the thickness direction of the layer can further
improve the computational accuracy.

In Table 4, a comparative study of the first five eigenfrequencies of thin square plates (¢/b = 0.01)
with a corner-support (where symmetry does not exist) and with four corner-supports (where symmetry
exists but not utilized in the computations) are given. The terms of displacement functions in the x- and
y-directions and the number of L02 layers in the z-direction are taken as 5 x 5 x 5. Comparison of the
present results with those obtained by the thin plate theory (Mizusawa and Kajita, 1987; Kim and
Dickinson, 1987) shows that good agreement is observed for all cases.

5.2. Numerical examples

From the convergence studies, it is found that the 7 x 7 terms of the displacement functions in the x—
v plane and five LO2 finite layers in the z-direction are sufficient to obtain satisfactory results for both
thin plates and thick plates and they are used throughout the following computations.

The non-dimensional eigenfrequencies of symmetric—symmetric modes for the simply-supported
isotropic rectangular plate with a central point-support are given in Table 5. The influences of aspect
ratio and side-to-thickness ratio on the eigenfrequencies are studied. It is observed that for a plate with
a prescribed aspect ratio, the non-dimensional eigenfrequencies, /4, decrease as the side-to-thickness ratio,
t/b, increases, especially for the higher modes. Conversely, for a plate with a prescribed thickness ratio,
the non-dimensional eigenfrequencies decrease as the aspect ratio, a/b, increases.

The second set of results is for a skew-symmetric rectangular laminate with a central point-support. It
consists of two plies with 0/90° stacking sequences. In this case, symmetry of vibrating modes of the
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Table 3
Convergence study of non-dimensional eigenfrequencies, 2 = w(b/2)>/p7/D for isotropic homogeneous square thick plates with
simply-supported edges and a central point-support

Thickness Terms in Mode number
ratio t/b X, ),z
SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

0.01 4x4x4 13.77 24.80 37.83 53.41 64.32 75.85 83.99 106.2
4x4x5 13.74 24.74 37.74 53.29 64.15 75.66 83.78 106.0
Sx5x4 13.65 24.80 37.60 53.80 64.32 75.50 83.99 104.9
5x5x%x5 13.62 24.74 37.52 52.96 64.15 75.32 83.78 104.6
6x6x4 13.56 24.80 37.45 52.87 64.32 75.29 83.99 104.1
6x6x5 13.53 24.74 37.36 52.75 64.15 75.11 83.78 103.9
6x6x6 13.52 24.71 37.32 52.68 64.06 75.01 83.66 103.7
Tx7Tx5 13.38 24.74 37.25 52.60 64.15 74.96 83.78 103.3
Kim and 13.29 24.67 37.05

Dickinson (1987)

0.1 4x4x4 11.88 21.58 29.97 36.46 40.23 45.35 48.05 53.81
4x4x5 11.85 21.50 29.85 36.46 40.07 45.35 47.86 53.57
S5x5x4 11.69 21.58 29.62 36.11 39.88 45.23 48.05 53.45
5x5x5 11.65 21.50 29.50 36.11 39.72 45.23 47.86 53.21
6x6x4 11.54 21.58 29.36 35.88 39.63 45.15 48.05 53.19
6x6x5 11.50 21.50 29.24 35.88 39.47 45.15 47.86 52.96
6x6x6 11.48 21.46 29.17 35.88 39.38 45.15 47.74 52.83
Tx7x5 11.39 21.50 29.03 35.71 39.28 45.10 47.86 52.76
7x7x 3" 11.31 21.37 28.82 35.71 38.99 45.10 47.50 52.35
Liew et al. (1994) 11.40 21.26 29.42

0.2 4x4x4 9.125 16.72 18.23 21.24 22.62 27.60 32.54 32.81
4x4x5 9.115 16.65 18.23 21.13 22.62 27.45 32.35 32.80
S5x5x4 8.962 16.72 18.05 20.96 22.56 27.38 32.54 32.62
S5x5x5 8.919 16.65 18.05 20.85 22.56 27.24 32.35 32.62
6x6x4 8.817 16.72 17.94 20.74 22.52 27.24 32.49 32.54
6x6x5 8.775 16.64 17.94 20.64 22.52 27.09 32.35 32.49
6x6x6 8.751 16.60 17.94 20.58 22.52 27.00 32.24 32.49
Tx7Tx5 8.663 16.64 17.85 20.47 22.49 26.98 32.35 32.40
7 x 7 x 3" 8.590 16.51 17.85 20.29 22.49 26.72 32.01 32.40
Liew et al. (1994) 8.512 16.29 20.60

# The quadratic interpolation in the z-direction is used for each layer.

plate still exists. The thickness of the two laminates is not identical. The thickness of the 0 and the 90°
ply is taken as 3/5 and 2/5 of the total thickness of the plate, respectively. The first eight non-
dimensional eigenfrequencies for the symmetric—symmetric modes are given in Table 6.

The final set of results is for a symmetric—symmetric rectangular laminate with a central point-
support. It consists of three plies with 0/90/0° stacking sequences. It is obvious that symmetry also exists
for such a plate. The thickness of each of the two outer 0° plies is taken as 2/5 of the total thickness,
while the thickness of the middle 90° ply is taken as 1/5 of the total thickness. The firseight non-
dimensional eigenfrequencies for the symmetric—symmetric modes are listed in Table 7 with different
aspect ratio and side-to-thickness ratio.

It should be pointed out that the accuracy of the finite layer analysis can be improved by using
quadratic (HO3) instead of the linear (L02) interpolations. In Table 8 a comparative study is given for
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Table 4
The first five non-dimensional eigenfrequencies, A = wb?/pt/D, of isotropic square thin plates with point supports at corners and
different boundary conditions at the edges

Bound. con. Methods M Ao 3 4 5
Present 15.59 24.51 40.32 55.52 64.98
C Mizusawa (1987) 15.12 23.70 39.37 53.53 62.54
Kim (1987) 15.17 23.92 39.39 54.16 62.85
C
Present 12.17 21.73 35.64 48.42 60.28
C Mizusawa (1987) 11.94 21.06 35.01 47.24 57.92
Kim (1987) 11.94 21.18 35.02 47.40 58.14
S
Present 9.724 17.54 30.83 44.41 52.71
S Mizusawa (1987) 9.608 17.32 30.60 43.65 51.04
Kim (1987) 9.6079 17.316 30.596 43.652 51.051
S
Present 5.427 16.31 22.45 29.95 44.50
C Mizusawa (1987) 5.312 15.86 21.71 29.29 43.39
Present 7.246 15.85 15.85 20.07 39.92
Mizusawa (1987) 7.111 15.77 15.77 19.60 38.43
Table 5

The first eight non-dimensional eigenfrequencies of symmetric-symmetric mode, 4 = a)(b/Z)Z«/pt/D, for isotropic thick plates with
simply-supported edges and a central point-support

Aspect Thickness Mode number
ratio a/b ratio t/b
SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8
1.0 0.10 11.38 21.50 29.03 35.71 39.28 45.10 47.86 52.76
0.15 9.913 18.95 23.81 24.19 30.03 32.23 38.97 42.17
0.20 8.663 16.64 17.85 20.47 22.49 26.98 32.35 32.40
0.25 7.648 14.29 14.69 17.65 17.95 23.05 25.92 26.02
0.30 6.825 11.90 13.08 14.91 15.46 20.05 21.57 21.60
1.5 0.10 7.520 15.26 22.37 26.24 29.79 32.76 38.31 40.54
0.15 6.857 13.43 19.50 19.86 22.69 25.53 27.13 30.92
0.20 6.208 11.83 14.89 17.00 19.13 19.64 22.86 23.18
0.25 5.625 10.50 11.91 14.94 15.28 17.15 18.52 19.64
0.30 5.117 9.404 9.927 12.12 13.26 15.15 15.41 17.15
2.0 0.10 5.453 11.61 17.80 21.83 25.66 26.72 29.39 34.97
0.15 5.132 10.36 15.82 17.81 19.09 22.14 23.48 24.97
0.20 4.781 9.210 13.36 14.00 16.68 17.60 18.71 19.14
0.25 4.437 8.229 10.68 12.44 14.08 14.68 14.94 16.71

0.30 4.115 7.409 8.903 11.13 11.73 12.43 13.04 14.76
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The first eight non-dimensional eigenfrequencies of symmetric-symmetric mode, 4 = w(b/2)*(pt/~/D11D2)"?, for skew-symmetric

rectangular laminates with simply-supported edges and a central point-support

Aspect Thickness Mode number
ratio a/b ratio t/b
SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

1.0 0.10 7.286 14.60 18.00 22.95 28.27 30.44 32.67 35.86
0.15 5.777 11.35 13.55 17.20 20.52 22.11 23.99 24.03
0.20 4.789 9.215 10.83 13.72 16.00 16.43 17.39 18.95
0.25 4.090 7.746 9.019 11.39 11.70 13.55 14.08 14.33
0.30 3.568 6.679 7.723 9.075 9.771 10.80 11.52 12.15

1.5 0.10 5.193 10.01 15.67 16.80 19.75 23.66 26.37 29.48
0.15 4.345 7.973 11.88 12.93 14.86 17.82 19.59 20.09
0.20 3.695 6.604 9.502 10.48 11.87 13.99 14.25 15.54
0.25 3.200 5.627 7.916 8.799 9.869 10.46 11.85 12.85
0.30 2.816 4.897 6.786 7.580 8.158 8.503 9.979 10.14

2.0 0.10 4.059 7.647 11.95 15.68 16.72 18.26 20.88 23.83
0.15 3.541 6.218 9.493 11.75 12.79 13.98 15.72 17.48
0.20 3.085 5.211 7.823 9.374 10.30 11.29 12.47 12.66
0.25 2.709 4.475 6.6398 7.802 8.607 9.442 9.580 10.47
0.30 2.405 3.916 5.758 6.687 7.377 7.628 8.132 8.955

Table 7

The first eight non-dimensional eigenfrequencies of symmetric-symmetric mode, A = w(b/2)2(pt/«/D11D22)1/ 2, for symmetric rec-
tangular laminates with simply-supported edges and a central point-support

Aspect Thickness Mode number
ratio a/b ratio t/b
SS-1 SS-2 SS-3 SS-4 SS-5 SS-6 SS-7 SS-8

1.0 0.10 7.328 13.19 20.88 22.12 25.73 30.94 35.19 35.59
0.15 5.920 10.37 15.10 16.94 19.13 23.00 23.13 25.29
0.20 4.896 8.580 11.76 13.66 15.39 16.76 18.27 19.40
0.25 4.157 7.328 9.637 11.40 12.88 12.92 15.08 15.25
0.30 3.609 6.398 8.161 9.768 10.27 11.14 11.33 12.72

1.5 0.10 5.657 9.216 13.95 19.76 20.73 22.45 25.22 27.14
0.15 4.681 7.425 11.11 14.59 15.42 16.62 17.92 18.69
0.20 3.937 6.164 9.244 11.29 12.31 13.26 13.38 14.86
0.25 3.379 5.265 7.914 9.219 10.18 10.43 11.38 12.36
0.30 2.954 4.599 6.914 7.792 8.528 8.678 9.847 10.57

2.0 0.10 5.105 7.102 10.50 14.45 18.93 20.50 21.27 22.88
0.15 4.195 5.910 8.493 11.55 14.42 14.85 15.42 15.44
0.20 3.513 4.988 7.086 9.622 11.13 11.50 11.75 12.48
0.25 3.010 4.293 6.080 8.238 9.055 9.121 9.666 10.48
0.30 2.630 3.761 5.328 7.190 7.524 7.639 8.216 9.739
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Table 8
The convergence and comparison study of finite layer method for three-dimensional eigenvalues A = (wa?)/n(pt/D)* of an
isotropic thick square plate with SSSS boundary conditions, t/a = 0.5, v = 0.3

Method Terms in x, y, z SS-1 SS-2 SS-3
Quadratic interpolation 2x2x2" 1.2630 1.8451 2.9351
2x2x3 1.2598 1.8451 2.9330
2x2x4 1.2592 1.8451 2.9326
2x2x5 1.2591 1.8451 2.9325
Linear interpolation 2x2x5 1.2709 1.8451 2.9439
2x2x8 1.2638 1.8451 2.9371
2x2x10 1.2621 1.8451 2.9355
2x2x15 1.2604 1.8451 2.9338
Rayleigh—Ritz® 4x4x9 1.2590 1.8451 2.9335

# The sequence of the terms is number of terms in x- and y-direction; number of finite layers in z-direction.
® From Liew, K.M., Hung, K.C., Lim, M.K., 1993. A continuum three-dimensional vibration analysis of thick rectangular plates.
Int. J. Solids Struct. 30 (24), 3357-3379.

an isotropic thick plate with SSSS support conditions for linear interpolation (L02) and quadratic
interpolation (HO03). It can be seen that the results of the 2 x 2 x 3 H03 analysis are already nearly exact
and are better than those of the 2 x 2 x 15 L02 analysis. It should be noted that be condensing the
degrees-of-freedom associated with the HO3 middle nodal surface there is very little difference in the
amount of computational efforts between the L02 and HO3 analysis.

6. Concluding remarks

A new set of two-dimensional basic functions has been developed by superimposing a set of static
beam functions under sinusoidal loads to another set of beam functions under point loads. Unlike
existing basic functions for vibration analysis of plates, this set of basic functions satisfies not only the
geometric boundary conditions at the edges of the plate but also the zero out-of-plane deflection at the
point supports. This new set of functions is combined with the finite layer method for the free vibration
analysis of isotropic and laminated composite rectangular plates with point supports. Numerical results
are compared with the thin-plate results for plates with different arrangement of point supports and
good agreement is observed in all cases. To demonstrate the influence of aspect ratio, side-to-thickness
ratio, material properties and stacking sequences on the vibrational behaviour of the plates with point
supports, a simply-supported plate with a central point support is taken as an example to study idetail.
Results for isotropic thick plates and laminated composite thick plates with two and three plies are
summarized. To the best of the authors’ knowledge, the information provided herein for three-
dimensional vibration of thick plates with point supports is presented for the first time.

Appendix A

The property matrix [D] for the composite materials with the fiber orientation angle 6 with respect to
the x-axis is
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[D] =
0 0 0 Dgs Dgys 0
0 0 0 D45 Dss 0
i Dis Dy D3z 0 0 Des i
where

Dy = Qum’ + 2(Q12 + 2Q66)m™n* + Qnan*,

D> = (Qu1 + Q2 — 4Qg6)mPn® + Oz (m* + 1),

D3 = Qu3m’® + Qoart”,

Dis = —mn’ Qay + m’nQyy — mn(m® — n*)(Q12 + 204,
Dy = Quin* 4+ 2(Q12 + 2066 )m*n* + Qom®,

Dy = Qi3 + Qant®, D33 = O3,

Dy = —n*nQ +mn* Q11 + mn(m* — n*)(Q12 + 2Q¢6).
D36 = (Q13 — Q23)mn,  Dag = Qaum’® + Qssn’,

Dys = (Qss — Qag)mn,  Dss = Qssm” + Qun’,

Des = (Q11 + 02 — 2012)m*°n? + Qm® — n2)

in which,

and

m = cos (0), n =sin (0)

On = En(l —v3v)/A, O = Exn(l —v31v13)/A,
Q33 = Ex3(l —viovar)/A, Qua = G, Qss = G,
Qo6 = G2, Q12 = (vi2 + vavi3)En/A,

O13 = (vi3 +vi2va3) En /A, Qo = (va3 + vaviz)Ess/A,

A=1—viavar — v23v30 — V31V13 — 2V V32V13.
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In the above equations, Ej; and E,; are the Young’s moduli parallel and perpendicular to the fibers,
respectively and Es; is the Young’s modulus in the thickness direction of the plate, G»3, G5 and G|, are
the shear moduli of elasticity, vi2, v21, V13, V31, v32 and vy3 are the Poisson’s ratios.
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Appendix B

The layer stiffness matrix [K] and mass matrix [M ] are written in the form of, respectively,

(Kliigg oo [Kliggy [Kliion oo Kl
(K] — (Khjag oo [Khyiy [Kligoa oo [Kligag
(Kbaag oo [Khiiys [Khisi oo [Khiss
i (Kliag oo [Klgay [Klgoa oo (Kl )
_[M]I.l,],l coo IMYigag Mligon .. [M]I,I.I,J_
(] = Mligaa . MLy Mligon ... Ml
(Mg .. Mhiry Mhiza ... [Mhass
Mg o My MLy o M ]
where

[Ki1] [Ki2] [Ki3]
[K][/klz [K21] [K»n] [Kas] , Lk=1,2,...,1, jl=1,2,...,J,
[K31] [K3] [K3s]

ijki
(Ml 0 0
[M]I]kl: 0 [M22] 0 3iak:132a""15 j:lzlvza"'a']y
0 0 [M33] ikl
in which,
2Wy > Wiy T 2Wy 02 Wiy T
[Ki1 )i = Dn 9x2 9x2 dx dy |[NI'[N]dz + Dy 92 ox 0y dx dy [[N]'[N]dz
T
AW, dWyy dN [ dN ZW; Wiy
+D55JJ 8x4/ o dXdyJ[E} I:E:| dZ+D16JJaxa; Ix2 dxdyJ[N]T[N]dZ

W, 92 W,
+ Deg J J IWy oWt 4 gy J[N]T[N] dz,
ax dy dx dy
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Wi Wy T PW; Wy T
Kol =D d = dxdy [[N]'[N]dz+ D ——2— = dxdy |[N]'[N]d
Kialya = D [ | 5052250 e dy [N 4 D [ [ 5520520 vy [TV o

T

AW W, dN] [ dN 2wy 2 Wy,

+D45JJ BITH gy dy”:—:| |:—i| dZ+D26JJ U M dyJ[N]T[N] dz
ax 0y dz dz dxdy 0)?2

W, 32 W),
+ Deg ” 17 Wi gy J[N]T[N] dz,
ax dy dx dy

W o[ dN AWy d Wy an1"
[KB]UM_DBJJ 8)(2 Wk]dxdyJ[N] E dZ+D45JJ ax dedyj E [N]dZ

T

AW, W, dN] >W; dN
+ Ds;s JJ BZTH gx dy”:— [N]dz + Dsg JJ Y Wiy dx dy J[N]T|:—:| dz,
ax dy dz ax dy dz

2Wy > Wiy T 2Wy 02 Wiy T
(Ko = Dz | | et dxdy [TV daz+ Du | | T ardy [N a:

T
OWy 0 W J[ dN [ dN} “ 2 Wy 92 Wy J T

b | dedy | ——| |45 |42+ D ' dx dy [[M'[Nd
+ 45JJ 0y ox x dy i | | & z+ Die dx 9y o2 xdy [[N]'[V] dz

2117.. 92
+ D66JJ8—VVU 8 Wk[ dX dy J[N]T[N] dZ,

ax dy dx dy
(Kol = D “az%azW"’ dx d J[N]T[N]dz—i—D ”32%% dx d J[N]T[N]dz
22ijkt = 22 02 9y o Y 26 )2 axdy y

T

AW, AW, dNT'T dN Wy 92 W,

+D44” yI7H dxdyj[—} [—} dz+D26” "—kldxdyj[N]T[N] dz
dy 0x dz dz dxdy 9)?

2 .02
+ D66“ O Wy Wi 4 dy J[N]T[N] dz,

ax dy dx dy
W T[ dN] AW, AW [ dNT
=D y i D y 3 e
(K23 = D23 JJ 52 Wia dx dy J[N ] & | 42+ Das JJ oy dy dx dyJ % [N]dz
T
oW oWy dN PW; dN
+D45JJ PE7H g dy”:—i| [N] dZ+D36JJ YW dx dyJ[N]T|:—i| dz,
ay 9y dz dx dy dz
W, an1" W, Ak
kl kl

dN

AW, AW, dN AWy AW,
+ D45“ UG Y dyJ[N]T[—} dz + DSSJJ—”—"’ dx dy J[N]T[ }dz,
ay 0x dz ax 0dx dz
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2 T 2. T
[K32lj = D2 ” L dy”:ﬂ} [N]dz + D36” W,-ja Wi g dyj[ dN] [N]dz

Y 9y? dz dx dy dz
AW, dWyy T[ dN} ” AW, dWy J T[ dN:|
D / dxdy |[N]'| — |dz+D d dxdy |[N]'| — | d
+ 44JJ 3y ay X J/J[ ] e z 4+ Dys ax 9y xdy [[NV] e z,

T
dNT'T dN AW, oW,
[K33]j0 = D33 ” Wi Wi dx dy J[—] [—} dz + Dy “ 02H gx dy J[N]T[N] dz
i dz dz ay dy

AW O W) AW O W),
+ Dys “ M dx dy J[N]T[N] dz + Dys “ TR dx dy J[N]T[N] dz
dy 0x ax dy

W oW,
+1)55”a 5 OWit dyJ[N]T[N] dz,

ox 0x
aW,; oW,
1 ljjkt = P - X ay Z,
[M1] PEH gy dy |INTTIN] 4
v ax 0x
oW oWy T
(M) = p ay dxdyJ[N] [N]dz,
[M33)jg = p | | WiWia dx dy J[N]T[N] dz.

In the above equations, the double integrations are carried out over the entire surface of the plate and
integration through the thickness of each layer is done separately, p is the density of the material.
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